先进催化材料实验室
- 发布日期:2025-01-04 15:13 点击次数:156 一、实验室简介 课题组致力于能源催化相关的催化材料的设计与研制。包括一氧化碳(二氧化碳)加氢制汽油、柴油、航煤等液体燃料和乙醇、烯烃、芳烃等化学品的高选择性催化材料研制,甲烷等低碳烷烃制低碳烯烃催化剂的研制及新反应路径研究,生物质(纤维素等)转化制多元醇、酸或酯的催化材料的研制,光/光电催化CO2还原的可控纳米结构催化剂的研制等。 二、课题组长 王野教授 个人简介: 东京工业大学博士(1996年) 东北大学,东京工业大学研究助理 (1996-2000年) 广岛大学研究助理,研究副教授 (2000-2001年) 厦门大学教授(2001年-) 固体表面物理化学国家重点实验室主任。教授从事催化基础研究,近年来提出接力催化策略开拓和发展了突破传统费托合成的合成气直接转化制烯烃、芳烃和乙醇以及C1分子光/电催化转化制乙烯、乙醇和乙二醇等C1化学新路线,并在生物质C-O/C-C键选择裁剪制备重要含氧化合物方面取得突破。2006年获国家杰出青年科学基金,2010年获中国催化青年奖。2005-2012年任中国化学会催化委员会副主任,现任国际催化协会理事会理事、美国化学会ACS Catal.副主编以及Appl. Catal. A、J. Energy Chem.、Green Energy Environ.、中国科学:化学、催化学报等刊物编委。在Nat. Catal.、Nat. Commun.、Chem、Angew. Chem. Int. Ed.、Chem. Soc. Rev.等重要学术刊物发表论文约240篇,获授权发明专利约50件。 三、 研究兴趣: 甲烷和低碳烷烃的C-H活化和选择性转化 合成气,二氧化碳以及其他C1分子的催化转化 光催化和电催化C1分子和生物质的化学合成 生物质(木质纤维素和相关平台分子)的催化转化 四、发表论文 2020 1. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C–C coupling over fluorine-modified copper, W. Ma; S. Xie; T. Liu; Q. Fan; J. Ye; F. Sun; Z. Jiang; Q. Zhang; J. Cheng and Y. Wang, Nat. Catal. 2020, 3, 478-487. 2. Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide, X. Wu; J. Li; S. Xie; P. Duan; H. Zhang; J. Feng; Q. Zhang; J. Cheng and Y. Wang, Chem. 2020, 6, 1–16. 3. Single-pass transformation of syngas into ethanol with high selectivity by triple tandem catalysis, J. Kang; S. He; W. Zhou; Z. Shen; Y. Li; M. Chen; Q. Zhang and Y. Wang, Nat. Commun. 2020, 11, 827. 4. Photocatalytic transformations of lignocellulosic biomass into chemicals, X. Wu; N. Luo; S. Xie; H. Zhang; Q. Zhang; F. Wang and Y. Wang, Chem. Soc. Rev. 2020, 49, 6198-6223. (Outside Front Cover). 5. Photocatalytic and electrocatalytic transformations of C1 molecules involving C−C coupling, S. Xie; W. Ma; X. Wu; H. Zhang; Q. Zhang; Y. Wang and Y. Wang, Energy Environ. Sci. 2020, DOI: 10.1039/D0EE01860K. 6. Subnanometer Bimetallic Pt‐Zn Clusters in Zeolites for Propane Dehydrogenation, Q. Sun; N. Wang; Q. Fan; L. Zeng; A. Mayoral; S. Miao; R. Yang; Z. Jiang; W. Zhou; J. Zhang; T. Zhang; J. Xu; P. Zhang; J. Cheng; D. Yang; R. Jia; L. Li; Q. Zhang; Y. Wang; Q. Terasaki and J. Yu, Angew. Chem. Int. Ed. 2020, 59, 2-11. 7. Efficient Catalysts for Green Synthesis of Adipic Acid from Biomass, W. Deng; L. Yan; B. Wang; Q. Zhang; H. Song; S. Wang; Q. Zhang and Y. Wang, Angew. Chem. Int. Ed. 2020, DOI:10.1002/anie.202013843. 8. Highly Active ZnO-ZrO2 Aerogels Integrated with H-ZSM-5 for Aromatics Synthesis from Carbon Dioxide, C. Zhou; J. Shi; W. Zhou; K. Cheng; Q. Zhang; J. Kang and Y. Wang, ACS. Catal. 2020, 10, 302-310. 9. Tandem Catalysis for Hydrogenation of CO and CO2 to Lower Olefins with Bifunctional Catalysts Composed of Spinel Oxide and SAPO-34, X. Liu; M. Wang; H. Yin; J. Hu; K. Cheng; J. Kang; Q. Zhang and Y. Wang, ACS. Catal. 2020, 10, 8303-8314. 10. In-situ confinement of ultrasmall palladium nanoparticles in silicalite-1 for methane combustion with excellent activity and hydrothermal stability, W. Wang; W. Zhou; W. Li; X. Xiong; Y. Wang; K. Cheng; J. Kang; Q. Zhang and Y. Wang, Appl. Catal. B 2020, 276, 119142. 11. Synthesis of hierarchical SAPO-34 to improve the catalytic performances of bifunctional catalysts for syngas-to-olefins reaction, M. Wang; Z. Wang; S. Liu; R. Gao; K. Cheng; L. Zhang; G. Zhang; X. Min; J. Kang; Q. Zhang and Y. Wang, J. Catal. 2020, DOI:10.1016/j.jcat.2020.08.020. 12. Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation, L. Yan; Q. Zhang; W. Deng; Q. Zhang and Y. Wang, Adv. Catal. 2020, 66, 1-108. 13. C–H activations of methanol and ethanol and C–C couplings into diols by zinc–indium–sulfide under visible light, H. Zhang; S. Xie; J. Hu; X. Wu; Q. Zhang; J. Chen and Y. Wang, Chem. Commun. 2020, 56, 1776-1779. (Outside Front Cover). 14. Direct conversion of syngas into aromatics over a bifunctional catalyst: inhibiting net CO2 release, W. Zhou; C. Zhou; H. Yin; J. Shi; G. Zhang; X. Zheng; X. Min; Z. Zhang; K. Cheng; J. Kang; Q. Zhang and Y. Wang, Chem. Commun. 2020, 56, 5239-5242. 15. Understanding Catalytic Mechanisms of Alkane Oxychlorination from the Perspective of Energy Levels, H. Zhang; Q. Fan; Q. Zhang; J. Kang; Y. Wang and J. Cheng, J. Phys. Chem. C. 2020, 124, 6070-6077. 16. Tunable localized surface plasmon resonances in MoO3−x-TiO2 nanocomposites with enhanced catalytic activity for CO2 photoreduction under visible light, S. Xie; H. Zhang; G. Liu; X. Wu; J. Lin; Q. Zhang and Y. Wang, Chin. J. Catal. 2020, 41, 1125-1131. 17. Relay catalysis in the direct conversion of carbon dioxide to high-value chemicals, Cheng K, Zhang Q, Kang J, Wang Y, Sci. Sin. Chim. 2020, 50, 743–755. 18. Nickel and indium core-shell co-catalysts loaded siliconnanowire arrays for efficient photoelectrocatalytic reduction of CO2 to formate, W. Ma; M. Xie; S. Xie; L. Wei; Y. Cai; Q. Zhang and Y. Wang, J. Energ. Chem. 2020, 54, 422-428. 19. "纳米反应器在合成气催化转化中的应用", 熊学韦; 成康; 张庆红; 王野, 厦门大学学报(自然科学版) 2020, 59(05), 609-619. 20. "光驱动低碳小分子碳氢活化与碳碳偶联的研究进展", 段蓬勃; 张海坤; 谢顺吉; 张庆红; 王野, 厦门大学学报(自然科学版) 2020, 59(05), 630-639. 2019 1.New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO2 into hydrocarbon chemicals and fuels, W. Zhou; K. Cheng; J. Kang; C. Zhou; V. Subramanian; Q. Zhang and Y. Wang, Chem. Soc. Rev. 2019, 48, 3193-3228(Outside Front Cover). 2.Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces, W. Ma; S. Xie; X.-G. Zhang; F. Sun; J. Kang; Z. Jiang; Q. Zhang; D.-Y. Wu; Y. Wang, Nat. Commun. 2019, 10, 892. 3. Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light, X. Wu; S. Xie; C. Liu; C. Zhou; J. Lin; J. Kang; Q. Zhang; Z. Wang and Y. Wang, ACS. Catal. 2019, 8443-8451. 4. Visible Light-driven Cleavage of C−O Linkage for Lignin Valorization to Functionalized Aromatics, J. Lin; X. Wu; S. Xie; L. Chen; Q. Zhang; W. Deng and Y. Wang, ChemSusChem 2019, 12, 5023-5031. 5.Direct conversion of cellulose into ethanol catalysed by a combination of tungstic acid and zirconia-supported Pt nanoparticles, H. Song; P. Wang; S. Li; W. Deng; Y. Li; Q. Zhang and Y. Wang, Chem. Commun. 2019, 55, 4303-4306(Inside Front Cover). 6.Photoelectrocatalytic reduction of CO2 to syngas over Ag nanoparticle modified p-Si nanowire arrays, L. Wei; J. Lin; S. Xie; W. Ma; Q. Zhang; Z. Shen and Y. Wang, Nanoscale 2019, 11, 12530-12536 (Outside Back Cover). 7. Zirconia-supported rhenium oxide as an efficient catalyst for the synthesis of biomass-based adipic acid ester, J. Lin; H. Song; X. Shen; B. Wang; S. Xie; W. Deng; D. Wu; Q. Zhang and Y. Wang, Chem. Commun. 2019, 55, 11017-11020(Inside Front Cover). 8.Catalytic transformation of 2,5-furandicarboxylic acid to adipic acid over niobic acid-supported Pt nanoparticles, L. Wei; J. Zhang; W. Deng; S. Xie; Q. Zhang and Y. Wang, Chem. Commun. 2019, 55, 8013-8016. 9. Investigation of the Electronic Structure of CdS Nanoparticles with Sum Frequency Generation and Photoluminescence Spectroscopy, J. Wang; X. Wu; Y. He; W. Guo; Q. Zhang; Y. Wang and Z. Wang, J. Phys. Chem. C 2019, 123, 27712-27716. 10. Catalytic conversion of cellulose-based biomass and glycerol to lactic acid, S. Li; W. Deng; Y. Li; Q. Zhang; Y. Wang, J. Energ. Chem. 2019, 32, 138-151. 11. Carbon nanotube-supported bimetallic Cu-Fe catalysts for syngas conversion to higher alcohols, S. He; W. Wang; Z. Shen; G. Li; J. Kang; Z. Liu; G.-C. Wang; Q. Zhang and Y. Wang, Mol. Catal. 2019, 479, 110610(Invited paper for a special issue Catalsis for Sustainability). 12. Selective conversion of syngas to aromatics over a Mo-ZrO2/H-ZSM-5 bifunctional catalyst, W. Zhou; S. Shi; Y. Wang; L. Zhang; Y. Wang; G. Zhang; X. Min; K. Cheng; Q. Zhang; J. Kang and Y. Wang, ChemCatChem 2019, 11, 1681-1688 (Invited for Young Researcher Series). 13. 催化选择氧化领域近年研究进展、挑战与展望, 谢顺吉, 王野, 催化学报, 2019, 40, 129-142 (NSFC催化与表界面化学学科前沿与发展战略研讨会特辑). 2018 1. Solar energy-driven lignin-first approach to full utilization of lignocellulosic biomass under mild conditions, X. Wu; X. Fan; S. Xie; J. Lin; J. Cheng; Q. Zhang; L. Chen; Y. Wang, Nat. Catal. 2018, 1, 772-780. 2. Visible light-driven C−H activation and C–C coupling of methanol into ethylene glycol, S. Xie; Z. Shen; J. Deng; P. Guo; Q. Zhang; H. Zhang; C. Ma; Z. Jiang; J. Cheng; D. Deng; Y. Wang, Nat. Commun. 2018, 9, 1181. 3. Direct Conversion of Syngas into Methyl Acetate, Ethanol and Ethylene by Relay Catalysis via Dimethyl Ether Intermediate, W. Zhou; J. Kang; K. Cheng; S. He; J. Shi; C. Zhou; Q. Zhang; J. Chen; L. Peng; M. Chen; Y. Wang, Angew. Chem. Int. Ed. 2018, 57, 12012-12016 (VIP). 4. Integrated tuneable synthesis of liquid fuels via Fischer–Tropsch technology, J. Li; Y. He; L. Tan; P. Zhang; X. Peng; A. Oruganti; G. Yang; H. Abe; Y. Wang; N. Tsubaki, Nat. Catal. 2018, 1, 787-793. 5. Room-Temperature Conversion of Methane Becomes True, Y. Wang, Joule 2018, 2, 1399-1401. 6. Catalytic amino acid production from biomass-derived intermediates, W. Deng; Y. Wang; S. Zhang; K. M. Gupta; M. J. Hülsey; H. Asakura; L. Liu; Y. Han; E. M. Karp; G. T. Beckhamc; P. J. Dyson; J. Jiang; T. Tanaka; Y. Wang; N. Yan, PNAS 2018, 115, 5093-5098. 7. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins via methanol/dimethyl ether intermediates, X. Liu; W. Zhou; Y. Yang; K. Cheng; J. Kang; L. Zhang; G. Zhang; X. Min; Q. Zhang; Y. Wang, Chem. Sci. 2018, 9, 4708-4718. 8. Oxidative Dehydrogenation of Propane to Propylene in the Presence of HCl Catalyzed by CeO2 and NiO-Modified CeO2 Nanocrystals, Q. Xie; H. Zhang; J. Kang; J. Cheng; Q. Zhang; Y. Wang, ACS Catal. 2018, 8, 4902-4916. 9. TiO2-based heterojunction photocatalysts for photocatalytic reduction of CO2 into solar fuels, L. Wei; C. Yu; Q. Zhang; H. Liu; Y. Wang, J. Mater. Chem. A 2018, 6, 22411-22436. 10. Catalytic Transformation of Cellulose and Its Derivatives into Functionalized Organic Acids, S. Li; W. Deng;S. Wang ; P. Wang; D. An; Y. Li; Q. Zhang; Y. Wang, ChemSusChem 2018, 11, 1995-2028 (Review). 11. Revealing the Double‐Edged Sword Role of Graphene on Boosted Charge Transfer versus Active Site Control in TiO2 Nanotube Arrays@RGO/MoS2 Heterostructure, Q. Quan; S. Xie; B. Weng; Y. Wang; Y.-J. Xu, Small 2018, 1704531. 12. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34, X. Liu; M. Wang; C. Zhou; W. Zhou; K Cheng; J. Kang; Q. Zhang; W. Deng; Y. Wang, Chem. Commun. 2018, 54, 140-143 (Inside Front Cover, Highly Cited Paper). 13. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts, W. Deng; P. Wang; B. Wang; Y. Wang; L. Yan; Y. Li; Q. Zhang; Z. Cao; Y. Wang, Green Chem. 2018, 20, 735-744 (Invited article for Themed Collection of International Symposium on Green Chemistry 2017). 14. Ethanol Synthesis from Syngas over Cu(Pd)-doped Fe(100): A Systematic Theoretical Investigation, W. Wang; Y. Wang; G. Wang, Phys. Chem. Chem. Phys. 2018, 20, 2492-2507. 15. Selective electrocatalytic conversion of methane to fuels and chemicals, S. Xie; S. Lin; Q. Zhang; Z. Tian; Y. Wang, J. Energ. Chem. 2018, 27, 1629-1636 (Review). 2017 1. “Bifunctional Catalysts for One-Step Conversion of Syngas into Aromatics with Excellent Selectivity and Stability”, K Cheng; W Zhou; J Kang; S He; S Shi; Q Zhang; Y Pan; W Wen; Y Wang, Chem., 2017, 334-347. (Highlighted in Preview article in Chem by M. Claeys) 2. “Advances in Catalysis for Syngas Conversion to Hydrocarbons”, K. Cheng, J. Kang, D. L. King, V. Subramanian, C. Zhou, Q. Zhang, Y. Wang, Adv. Catal., 2017, 60, 125-208. (Review) 3. “Photocatalytic coupling of formaldehyde to ethylene glycol and glycolaldehyde over bismuth vanadate with controllable facets and cocatalysts”, S Xie; Z Shen; H Zhang; J Cheng; Q Zhang*; Y Wang*, Catal. Sci. Technol., 2017, 7, 923-933. 4. “Impact of hierarchical pore structure on the catalytic performances of MFI zeolites modified by ZnO for the conversion of methanol to aromatics”, X. Shen, J. Kang, W. Niu, M. Wang, Q. Zhang*, Y. Wang*, Catal. Sci. Technol., 2017, 7, 3598-3612. 5. “Reaction coupling as a promising methodology for selective conversion of syngas into hydrocarbons beyond Fischer-Tropsch synthesis. K. Cheng, J. Kang, Q Zhang; Y. Wang*, Sci. China Chem., 2017, 60, 1382-1385. (Perspective and Cover Article) 6. “Polyaniline-supported iron catalyst for selective synthesis of lower olefins from syngas”, B Gu; S He; W Zhou; J Kang; K Cheng; Q Zhang; Y Wang, J. Energ. Chem., 2017, 26, 608-615. 7. “Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction”, T Liu; K Wang; Q Yuan; Z Shen; Y Wang; Q Zhang; X Wang, Nanoscale, 2017, 9, 2963-2968. 8. “CO Dissociation Mechanism on Pd-Doped Fe(100): Comparison with Cu/Fe(100), W. Wang, Y. Wang*, G. C. Wang*, J. Phys. Chem. C, 2017, 121, 6820-6834. 9. “Finely Composition-Tunable Synthesis of Ultrafine Wavy PtRu Nanowires as Effective Electrochemical Sensors for Dopamine Detection”, W Zhao; B Ni; Q Yuan; Y Wang; Q Zhang; X Wang, Langmuir, 2017, 33, 8070-8075. 10. “Photoelectrochemical Reduction of CO2 Over Graphene-Based Composites: Basic Principle, Recent Progress, and Future Perspective”,Q. Quan,S. Xie,Y. Wang,Y. Xu,Acta Phys. Chim. Sin., 2017, 33, 2404-2423. 11. “Catalytic Hydrogenation of CO2 to Methanol via MOF-Confined Ultrasmall Cu/ZnOx Nanoparticles”,Y. Wang,Acta Phys. Chim. Sin., 2017, 33 (5), 857-858. 2016 1. “Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling”, K Cheng; B Gu; X Liu; J Kang; Q Zhang*; Y Wang*, Angew. Chem. Int. Ed., 2016, 55, 4725-4728. (VIP Paper, Highlighted by Angew. Chem. Int. Ed, Highly Cited Paper by Clarivate)) 2. “Pyrolysis of Metal–Organic Frameworks to Fe3O4@Fe5C2 Core–Shell Nanoparticles for Fischer–Tropsch Synthesis”, B An; K Cheng; C Wang*; Y Wang*; W Lin*, ACS Catal., 2016, 6, 3610-3618. 3. “The role of carbon pre-coating for the synthesis of highly efficient cobalt catalysts for Fischer–Tropsch synthesis”, K Cheng; V Subramanian; A Carvalho; V V Ordomsky*; Y Wang; A Y Khodakov, J. Catal., 2016, 337, 260-271. 4. “Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines”, W Deng; J Chen; J Kang; Q Zhang*; Y Wang*, Chem. Commun., 2016, 52, 6805-6808. 5. “Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures”, S Xie; Q Zhang*; G Liu; Y Wang*, Chem. Commun., 2016, 52, 35-59. 6. “Mesoporous Zeolite Y-Supported Co Nanoparticles as Efficient Fischer-Tropsch Catalysts for Selective Synthesis of Diesel Fuel”, J Kang; X Wang; X Peng; Y Yang; K Cheng; Q Zhang*; Y Wang*, Ind. Eng. Chem. Res., 2016, 55, 13008-13019. 7. “Direct conversion of formaldehyde to ethylene glycol via photocatalytic carbon-carbon coupling over bismuth vanadate”, Z Shen; S Xie; W Fan; Q Zhang; Z Xie; W Yang; Y Wang; J Lin; X Wu; H Wan; Y Wang*, Catal. Sci. Technol., 2016, 6, 6485-6489. 8. “Mesoporous H-ZSM-5 as an efficient catalyst for conversions of cellulose and cellobiose into methyl glucosides in methanol”, L Xue; K Cheng; H Zhang; W Deng; Q Zhang*; Y Wang*, Catal. Today, 2016, 274, 60-66. 9. “A new horizontal in C1 chemistry: Highly selective conversion of syngas to light olefins by a novel OX-ZEO process”, Y Wang*, J. Energ. Chem., 2016, 25, 169-170. 10. “Production of organic acids from biomass resources”, W Deng; Y Wang*; N Yan*, Current Opinion in Green and Sustainable Chemistry, 2016, 2, 54-58. 2015 1. Impact of Hydrogenolysis on the Selectivity of the Fischer-Tropsch Synthesis: Diesel Fuel Production over Mesoporous Zeolite-Y-Supported Cobalt Nanoparticles. X Peng; K Cheng; J Kang; B Gu; X Yu; Q Zhang*; Y Wang*, Angew. Chem. Int. Ed., 2015, 54, 4553-4556. 2. Selective Transformation of Syngas into Gasoline-Range Hydrocarbons over Mesoporous H-ZSM-5-Supported Cobalt Nanoparticles. K Cheng; L Zhang; J Kang; X Peng; Q Zhang*; Y Wang*, Chem.Eur. J., 2015, 21, 1928-1937. 3. Carbon dioxide-enhanced photosynthesis of methane and hydrogen from carbon dioxide and water over Pt-promoted polyaniline-TiO2 nanocomposites. G Liu; S Xie; Q Zhang*; Z Tian; Y Wang*, Chem. Commun., 2015, 51, 13654-13657. 4. SrNb2O6 nanoplates as efficient photocatalysts for the preferential reduction of CO2 in the presence of H2O.S Xie; Y Wang*; Q Zhang*; W Deng; Y Wang*, Chem. Commun., 2015, 51, 3430-3433. 5. Pore size effects in high-temperature Fischer–Tropsch synthesis over supported iron catalysts”, K Cheng; M Virginie; V V Ordomsky; C Cordier; P A Chernavskii; M I Ivantsov; S Paul; Y Wang; A Y Khodakov, J. Catal., 2015, 328, 139-150 6. Sodium-promoted iron catalysts prepared on different supports for high temperature Fischer–Tropsch synthesis”, K Cheng; V V Ordomsky; B Legras; M Virginie; S Paul; Y Wang; A Y Khodakov, Appl. Catal. A-Gen., 2015, 502, 204-214.5. 7. Functionalized Carbon Nanotubes for Biomass Conversion: The Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid over Platinum Supported on a Carbon Nanotube Catalyst.C Zhou; W Deng; X Wan; Q Zhang*; Y Yang; Y Wang*, ChemCatChem, 2015, 7, 2853-2863. 8. Oxidative conversion of lignin and lignin model compounds catalyzed by CeO2-supported Pd nanoparticles.W Deng; H Zhang; X Wu; R Li; Q Zhang*; Y Wang*, Green Chem., 2015, 17, 5009-5018. 9. Catalytic transformation of cellulose and its derived carbohydrates into chemicals involving C-C bond cleavage. W Deng; Q Zhang*; Y Wang*,J. Energ. Chem., 2015, 24, 595-607. 10.Selective activation of the C-O bonds in lignocellulosic biomass for the efficient production of chemicals. W Deng; H Zhang; L Xue; Q Zhang*; Y Wang*, Chin. J. Catal., 2015, 36, 1440-1460 11.Catalytic transformations of cellulose and its derived carbohydrates into 5-hydroxymethylfurfural, levulinic acid, and lactic acid. W Deng; Q Zhang*; Y Wang*, Sci. China Chem., 2015, 58, 29-46. 2014 1. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Z Guo; B Liu; Q Zhang; W Deng; Y Wang; Y Yang, Chem. Soc. Rev., 2014, 43, 3480-3524. 2. Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen. B Hu; W Deng; R Li; Q Zhang; Y Wang; F Delplanque-Janssens; D Paul; F Desmedt; P Miquel,J. Catal., 2014, 319, 15-26. 3. Base-Free Aerobic Oxidation of 5-Hydroxymethyl-furfural to 2,5-Furandicarboxylic Acid in Water Catalyzed by Functionalized Carbon Nanotube-Supported Au-Pd Alloy Nanoparticles. X Wan; C Zhou; J Chen; W Deng; Q Zhang; Y Yang; Y Wang, ACS Catal., 2014, 4, 2175-2185. 4. MgO- and Pt-Promoted TiO2 as an Efficient Photocatalyst for the Preferential Reduction of Carbon Dioxide in the Presence of Water. S Xie; Y Wang; Q Zhang; W Deng; Y Wang, ACS Catal., 2014, 4, 3644-3653. 5. Fischer-Tropsch Catalysts for the Production of Hydrocarbon Fuels with High Selectivity. Q Zhang; K Cheng; J Kang; W Deng; Y Wang, ChemSusChem, 2014, 7, 1251-1264. 6. Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations. Z Tang; W Deng; Y Wang; E Zhu; X Wan; Q Zhang; Y Wang, ChemSusChem, 2014, 7, 1557-1567. 7. Cs-substituted tungstophosphate-supported ruthenium nanoparticles as efficient and robust bifunctional catalysts for the conversion of inulin and cellulose into hexitols in water in the presence of H2. W Deng; E Zhu; M Liu; Q Zhang; Y Wang, Rsc Advances, 2014, 4, 43131-43141. 8. Magnesia-supported gold nanoparticles as efficient catalysts for oxidative esterification of aldehydes or alcohols with methanol to methyl esters. X Wan; W Deng; Q Zhang; Y Wang, Catal. Today, 2014, 233, 147-154. 9. Catalytic transformations of cellulose and cellulose-derived carbohydrates into organic acids. W Deng; Q Zhang; Y Wang, Catal. Today, 2014, 234, 31-41. 10. Oxidative dehydrogenation of ethane to ethylene in the presence of HCl over CeO2-based catalysts. F Yu; X Wu; Q Zhang; Y Wang, Chin. J. Catal., 2014, 35, 1260-1266. 11. A Comparative Study of Size Effects in the Au-Catalyzed Oxidative and Non-Oxidative Dehydrogenation of Benzyl Alcohol. J Chen; W Fang; Q Zhang; W Deng; Y Wang, Chem-Asian J, 2014, 9, 2187-2196. 2013 1. “Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water”, Y Wang; W Deng; B Wang; Q Zhang; X Wan; Z Tang; Y Wang; C Zhu; Z Cao; G Wang; H Wan, Nat. Commun., 2013, 4. 2. “Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure”, Q Zhai; S Xie; W Fan; Q Zhang; Y Wang; W Deng; Y Wang, Angew. Chem. Int. Ed., 2013, 52, 5776-5779 3. “Photocatalytic reduction of CO2 with H2O: significant enhancement of the activity of Pt-TiO2 in CH4 formation by addition of MgO”, S Xie; Y Wang; Q Zhang; W Fan; W Deng; Y Wang, Chem. Commun., 2013, 49, 2451-2453. 4. “Active site and reaction mechanism for the epoxidation of propylene by oxygen over CuOx/SiO2 catalysts with and without Cs+ modification”, J He; Q Zhai; Q Zhang; W Deng; Y Wang, J. Catal., 2013, 299, 53-66. 5. “Niobic Acid Nanosheets Synthesized by a Simple Hydrothermal Method as Efficient Bronsted Acid Catalysts”, W Fan; Q Zhang; W Deng; Y Wang, Chem. Mater., 2013, 25, 3277-3287. 6. “Semiconductor-based nanocomposites for photocatalytic H2 production and CO2 conversion”, W Fan; Q Zhang; Y Wang, Phys. Chem. Chem. Phys., 2013, 15, 2632-2649. 7. “Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts”, J Wang; Z You; Q Zhang; W Deng; Y Wang, Catal. Today, 2013, 215, 186-193. 8. “Catalytic conversion of methyl chloride to lower olefins over modified H-ZSM-34”, T Xu; H Song; W Deng; Q Zhang; Y Wang, Chin. J. Catal., 2013, 34, 2047-2056. 9. “Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst”, Z You; W Deng; Q Zhang; Y Wang, Chin. J. Catal., 2013, 34, 956-963. 10. “Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis”, Q Zhang; W Deng; Y Wang, J. Energ. Chem., 2013, 22, 27-38. 11. “Ru particle size effect in Ru/CNT-catalyzed Fischer-Tropsch synthesis”, J Kang; W Deng; Q Zhang; Y Wang, J. Energ. Chem., 2013, 22, 321-328. 2012 1. Transformation of Methane to Propylene: A Two-Step Reaction Route Catalyzed by Modified CeO2 Nanocrystals and Zeolites, J He; T Xu; Z Wang; Q Zhang*; W Deng; Y Wang*, Angew. Chem. Int. Ed., 2012, 51, 2438-2442. 2. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides, T Xu; Q Zhang*; H Song; Y Wang*, J. Catal., 2012, 295, 232-241 3. Mesoporous Beta Zeolite-Supported Ruthenium Nanoparticles for Selective Conversion of Synthesis Gas to C5-C11 Isoparaffins, K Cheng; J Kang; S Huang; Z You; Q Zhang*; J Ding; W Hua; Y Lou; W Deng; Y Wang*, ACS Catal., 2012, 2, 441-449. 4. Selective Conversion of Cellobiose and Cellulose into Gluconic Acid in Water in the Presence of Oxygen, Catalyzed by Polyoxometalate-Supported Gold Nanoparticles, D An; A Ye; W Deng; Q Zhang*; Y Wang*, Chem.Eur. J., 2012, 18, 2938-2947. 5. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals, W Deng; Q Zhang*; Y Wang*, Dalton. Trans., 2012, 41, 9817-9831. 6. Significant Synergistic Effect between Supported Ruthenium and Copper Oxides for Propylene Epoxidation by Oxygen, W Long; Q Zhai; J He; Q Zhang*; W Deng; Y Wang*, ChemPlusChem, 2012, 77, 27-30. 7. CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation, A Ye; W Fan; Q Zhang*; W Deng; Y Wang*, Catal. Sci. Technol., 2012, 2, 969-978. 8. Development of Bifunctional Catalysts for the Conversions of Cellulose or Cellobiose into Polyols and Organic Acids in Water, W Deng; Q Zhang*; Y Wang*, Catal. Surv. Asia, 2012, 16, 91-105. 2011 1. Mesoporous Zeolite-Supported Ruthenium Nanoparticles as Highly Selective Fischer-Tropsch Catalysts for the Production of C5-C11 Isoparaffins, J Kang; K Cheng; L Zhang; Q Zhang*; J Ding; W Hua; Y Lou; Q Zhai; Y Wang*, Angew. Chem. Int. Ed., 2011, 50, 5200-5203. 2. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions, M Liu; W Deng; Q Zhang*; Y Wang*, Chem. Commun., 2011, 47, 9717-9719. 3. Effect of size of catalytically active phases in the dehydrogenation of alcohols and the challenging selective oxidation of hydrocarbons, Q Zhang*; W Deng; Y Wang*, Chem. Commun., 2011, 47, 9275-9292. 4. Hydrotalcite-Supported Gold Catalyst for the Oxidant-Free Dehydrogenation of Benzyl Alcohol: Studies on Support and Gold Size Effects, W Fang; J Chen; Q Zhang*; W Deng; Y Wang*, Chem.Eur. J., 2011, 17, 1247-1256. 5. Nanocomposites of TiO2 and Reduced Graphene Oxide as Efficient Photocatalysts for Hydrogen Evolution, W Fan; Q Lai; Q Zhang*; Y Wang*, J. Phys. Chem. C, 2011, 115, 10694-10701. 6. Manganese-promoted cobalt oxide as efficient and stable non-noble metal catalyst for preferential oxidation of CO in H-2 stream, Q Zhang*; X Liu; W Fan; Y Wang*, Appl. Catal. B Environ., 2011, 102, 207-214. 7. Direct transformation of cellulose into methyl and ethyl glucosides in methanol and ethanol media catalyzed by heteropolyacids, W Deng; M Liu; Q Zhang*; Y Wang*, Catal. Today, 2011, 164, 461-466. 8. Rh-catalyzed syngas conversion to ethanol: Studies on the promoting effect of FeOx, J Wang; Q Zhang*; Y Wang*, Catal. Today, 2011, 171, 257-265. 2010 1. Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures, W Deng; M Liu; Q Zhang*; X Tan; Y Wang*, Chem. Commun., 2010, 46, 2668-2670. 2. Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, W Fang; Q Zhang*; J Chen; W Deng; Y Wang*, Chem. Commun., 2010, 46, 1547-1549. 3. Copper-catalyzed propylene epoxidation by oxygen Significant promoting effect of vanadium on unsupported copper catalyst, L Yang; J He; Q Zhang*; Y Wang*, J. Catal., 2010, 276, 76-84. 4. Effects of acidity and microstructure on the catalytic behavior of cesium salts of 12-tungstophosphoric acid for oxidative dehydrogenation of propane, J Zhang; M Sun; C Cao; Q Zhang*; Y Wang*; H Wan, Appl. Catal. A, 2010, 380, 87-94. 5. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity, Q Zhang*; J Kang; Y Wang*, ChemCatChem, 2010, 2, 1030-1058. 6. Catalytic selective oxidation or oxidative functionalization of methane and ethane to organic oxygenates, Y Wang*; D An; Q Zhang*, Sci. China-Chem., 2010, 53, 337-350. 五、授权专利 1. 康金灿, 曾雷, 周伟, 张庆红, 王野, 一种低碳烷烃脱氢制备对应烯烃的催化剂及其应用, 2020.11.10, 中国, ZL 201910260429.7 2. 谢顺吉, 马文超, 张庆红, 王野, 还原二氧化碳制甲酸的催化剂及其制备方法, 2020.4.10,中国, ZL 201811597998.2 3. 谢顺吉, 陈雯雯, 谢明灿, 李径, 张庆红, 王野, 一种电催化甲醛制乙二醇的方法, 2020.1.7, 中国, ZL 201811493422.1 4. 康金灿, 汪旸, 刘志铭, 张庆红, 王野, 一种多功能复合催化剂及其制备方法和应用, 2020.8.25, 中国, ZL 201811154084.9 5. 王野, 周伟, 康金灿, 史家庆, 何顺, 常浩浩, 成康, 张庆红, 一种合成气一步法制乙酸甲酯的方法, 2020.11.3, 中国, ZL 201810700704.8 6. 康金灿, 常浩浩, 何顺, 周伟, 史家庆, 成康, 张庆红, 王野, 一种合成气直接制备乙醇的方法, 2020.7.31, 中国, ZL 201810700699.0 7. 康金灿, 刘小梁, 汪孟恒, 成康, 张庆红, 王野, 一种多功能纳米复合催化剂及其制备方法和应用, 2020.7.10, 中国, ZL 201810124099.4 8. 康金灿, 尤勇, 常浩浩, 成康, 张庆红, 王野, 一种合成气催化转化催化剂及其制备方法, 2019.7.26, 中国, ZL 201711449809.2 9. 张庆红, 王珊珊, 邓卫平, 李适, 王野, 一种负载型金属催化剂的制备及其应用, 2020.1.31, 中国, ZL 201710351216.6 10. 王野, 何顺, 康金灿, 张庆红, 一种合成气制备低碳混合醇的催化剂及其制备方法, 2019.3.5, 中国, ZL 201710064625.8 11. 康金灿, 成康, 周伟, 何顺, 张庆红, 王野, 一种甲醇高选择性制芳烃的方法, 2019.12.10, 中国, ZL 201710029643.2 12. 王野, 谢顺吉, 吴雪娇, 林锦池, 张庆红, 催化转化木质素及其衍生芳醚制备芳香化合物的方法, 2019.10.18, 中国, ZL 201611249745.7 13. 王野, 沈泽斌, 谢顺吉, 邓德会, 张庆红, 一种光催化转化甲醇制备乙二醇的方法, 2019.10.18, 中国, ZL 201611249732.X 14. 康金灿, 成康, 周伟, 何顺, 师树临, 张庆红, 王野, 由合成气高选择性制轻质芳烃的催化剂及其制备方法, 2019.9.10, 中国, ZL 201610965244.2 15. 王野, 康金灿, 成康, 张庆红, 周伟, 一种合成气一步转化制芳烃的催化剂及其制备方法, 2018.9.4, 中国, ZL 201610609584.1 16. 王野, 康金灿, 成康, 张庆红, 刘小梁, 顾榜, 汪孟恒, 一种合成气一步转化制低碳烯烃的催化剂及其制备方法, 2018.11.13, 中国, ZL 201610614593.X 17. 张庆红, 庾翔, 康金灿, 尤勇, 何顺, 王晓杰, 王野, 一种合成气催化转化制柴油馏分的催化剂及其制备方法, 2019.4.16, 中国, ZL 201610300621.0 18. 王野, 谢顺吉, 沈泽斌, 范文青, 吴雪娇, 林锦池, 张庆红, 一种钒酸铋基光催化剂及其制备方法与应用, 2017.11.24, 中国, ZL 201610053901.6 19. 张庆红, 李功柱, 康金灿, 何顺, 成康, 王野, 一种合成气制备低碳醇的催化剂及其制备方法, 2017.2.1, 中国, ZL 201510262712.5 20. 康金灿, 解泉华, 张庆红, 郁风驰, 王野, 一种从丙烷氧化脱氢制备丙烯的方法, 2016.7.6, 中国, ZL 201410834215.3 21. 王野, 康金灿, 彭小波, 成康, 庾翔, 顾榜, 张庆红, 邓卫平, 一种由合成气一步转化制柴油馏分的催化剂及其制备方法, 2016.3.16, 中国, ZL 201410388954.4
相关资讯